Boundary Element Method for Wave Equation

Michal Merta

IT4Innovations, Dept. of Applied Mathematics
michal.merta@vsb.cz
March 4, 2014

```
IT4Innovations
national
supercomputing
center
```


EUROPEAN UNION
EUROPEAN REGIONAL DEVELOPMENT FUND
INVESTING IN YOUR FUTURE Development for Innovation

1 Introduction

2 BEM for wave equation

3 Numerical realization

4 Conclusion

Motivation

- modelling of wave (acoustic/electromagnetic) propagation has numerous engineering applications
- nondestructive testing
- seismology
- radar
- ultrasonic imaging
- tomography
- BEM especially suitable for modelling of wave propagation in an unbounded domain

Wave equation

Scattering problem

$$
\left\{\begin{aligned}
\frac{1}{c^{2}} \frac{\partial^{2} u^{s c}}{\partial^{2} t}(x, t)-\Delta u^{s c}(x, t) & =0 & & \text { in } \Omega \times \mathbb{R} \\
u^{s c}(x, 0) & =0 & & \text { in } \Omega \\
\frac{\partial u^{s c}}{\partial t}(x, 0) & =0 & & \text { in } \Omega \\
\mathcal{B} u^{s c}(x, t) & =-\mathcal{B} u^{i n c}(x, t) & & \text { on } \Gamma \times \mathbb{R}_{+}
\end{aligned}\right.
$$

- boundary conditions
- sound-soft scatterer: $\mathcal{B} u=u$
- sound-hard scatterer: $\mathcal{B} u=\frac{\partial u}{\partial n}$
- absorbing scatterer: $\mathcal{B} u=\frac{\partial u}{\partial n}-\alpha \frac{\partial u}{\partial t}$

Wave equation

BEM approaches to wave equation

- Space-time integral equations
- use the fundamental solution of the wave equation
- global in time
- large system matrix
- special integration method needed
- Laplace transform method
- solve frequency domain problems and use inverse Laplace/Fourier transform for transform to time domain
- Time-stepping methods
- use implicit scheme for time-discretization and BEM for the solution of resulting elliptic problems in each time step

Fundamental solutions

Lemma

The fundamental solution of the wave equation is given by

$$
\begin{array}{ll}
G(t, x, y)=\frac{1}{2} H(t-|x-y|) & \text { in 1D, } \\
G(t, x, y)=\frac{1}{2} \frac{H(t-|x-y|)}{\sqrt{t^{2}-|x-y|}} & \text { in 2D, } \\
G(t, x, y)=\frac{1}{4 \pi} \frac{\delta(t-|x-y|)}{|x-y|} & \text { in 3D. }
\end{array}
$$

Representation theorem

Representation formula in 3D

$$
\begin{aligned}
u(t, x)= & \int_{0}^{t} \int_{\Gamma} \frac{\partial}{\partial n(y)} G(t-s, x-y)[u(s, y)]-G(t-s, x-y)\left[\frac{\partial}{\partial n} u(y)\right] \mathrm{d} \Gamma_{y} \mathrm{~d} s \\
= & \int_{0}^{t} \int_{\Gamma} \frac{\partial}{\partial n(y)}\left(\frac{1}{4 \pi|x-y|} \delta(t-s-|x-y|)\right)[u(s, y)] \\
& -\frac{1}{4 \pi|x-y|} \delta(t-s-|x-y|)\left[\frac{\partial}{\partial n} u(y)\right] \mathrm{d} \Gamma_{y} \mathrm{~d} s \\
= & \int_{0}^{t} \int_{\Gamma} \frac{\partial}{\partial n(y)} \frac{1}{4 \pi|x-y|} \delta(t-s-|x-y|)[u(s, y)] \\
& -\frac{1}{4 \pi|x-y|} \frac{\partial|x-y|}{\partial n(y)} \frac{\partial}{\partial t} \delta(t-s-|x-y|)[u(s, y)] \\
& -\frac{1}{4 \pi|x-y|} \delta(t-s-|x-y|)\left[\frac{\partial}{\partial n} u(y)\right] \mathrm{d} \Gamma_{y} \mathrm{~d} s \\
= & \int_{\Gamma} \frac{\partial}{\partial n(y)} \frac{1}{4 \pi|x-y|}[u(t-|x-y|, y)]-\frac{1}{4 \pi|x-y|} \frac{\partial|x-y|}{n(y)}\left[\frac{\partial}{\partial t} u(t-|x-y|)\right] \\
& -\frac{1}{4 \pi|x-y|}\left[\frac{\partial}{\partial n} u(t-|x-y|, y)\right] \mathrm{d} \Gamma_{y}
\end{aligned}
$$

Boundary layer potentials

Representation formula in 3D

$$
\begin{aligned}
u(t, x)= & \int_{\Gamma} \frac{\partial}{\partial n(y)} \frac{1}{4 \pi|x-y|}[u(t-|x-y|, y)]-\frac{1}{4 \pi|x-y|} \frac{\partial|x-y|}{n(y)}\left[\frac{\partial}{\partial t} u(t-|x-y|)\right] \mathrm{d} \Gamma_{y} \\
& -\int_{\Gamma} \frac{1}{4 \pi|x-y|}\left[\frac{\partial}{\partial n} u(t-|x-y|, y)\right] \mathrm{d} \Gamma_{y}=\mathcal{D}([u])-\mathcal{S}\left(\left[\partial_{n} u\right]\right), \quad x \in \Omega
\end{aligned}
$$

Let $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{3} \backslash \Gamma$. For $p, \varphi: \mathbb{R}_{+} \times \Gamma \rightarrow \mathbb{R}$ we define

- single layer potential

■ $(\mathcal{S}([p]))(t, x):=\int_{\Gamma} \frac{1}{4 \pi|x-y|}[p(t-|x-y|, y)] \mathrm{d} \Gamma_{y}$

- double layer potential
- $(\mathcal{D}([\varphi]))(t, x):=$

$$
\begin{aligned}
& \int_{\Gamma} \frac{\partial}{\partial n(y)} \frac{1}{4 \pi|x-y|}[\varphi(t-|x-y|, y)]-\frac{1}{4 \pi|x-y|} \frac{\partial|x-y|}{n(y)}\left[\frac{\partial}{\partial t} \varphi(t-|x-y|)\right] \mathrm{d} \Gamma_{y}= \\
& =\frac{1}{4 \pi} \int_{\Gamma} \frac{n(y)(x-y)}{|x-y|}\left(\frac{\varphi(t-|x-y|, y)}{|x-y|^{2}}+\frac{\dot{\varphi}(t-|x-y|, y)}{|x-y|}\right) \mathrm{d} \Gamma_{y}
\end{aligned}
$$

Retarded potential operators

For $x \in \Omega^{-}$, resp. $x \in \Omega$ going to Γ :
Traces of the potential operators

$$
\begin{aligned}
& \lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)=\lim _{\Omega \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)=V p(t, x) \\
& \lim _{\Omega^{-} \ni x \rightarrow \Gamma} \frac{\partial(S(p))}{\partial n}(t, x)=(I / 2+K) p(t, x) \\
& \lim _{\Omega \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{S}(p))}{\partial n}(t, x)=(-I / 2+K) p(t, x) \\
& \lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(-I / 2+K^{\prime}\right) \varphi(t, x) \\
& \lim _{\Omega \ni x \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(I / 2+K^{\prime}\right) \varphi(t, x) \\
& \lim _{\Omega^{-} \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=\lim _{\Omega \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=W \varphi(t, x)
\end{aligned}
$$

Retarded potential operators

For $x \in \Omega^{-}$, resp. $x \in \Omega$ going to Γ :

Traces of the potential operators

$$
\begin{array}{r}
\lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)=\lim _{\Omega \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)=V p(t, x) \\
\lim _{\Omega^{-} \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{S}(p))}{\partial n}(t, x)=(I / 2+K) p(t, x) \\
\lim _{\Omega \rightarrow \Gamma \rightarrow \Gamma} \frac{\partial(\mathcal{S}(p))}{\partial n}(t, x)=(-I / 2+K) p(t, x) \\
\lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(-I / 2+K^{\prime}\right) \varphi(t, x) \\
\lim _{\Omega \ni x \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(I / 2+K^{\prime}\right) \varphi(t, x) \\
\lim _{\Omega \rightarrow x \rightarrow \Gamma} \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=\lim _{\Omega \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=W \varphi(t, x)
\end{array}
$$

Retarded potential operators

For $x \in \Omega^{-}$, resp. $x \in \Omega$ going to Γ :

Traces of the potential operators

$$
\begin{aligned}
& \lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)= \\
& \lim _{\Omega \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)=V p(t, x) \\
& \Omega^{-} \ni x \rightarrow \Gamma \\
& \lim _{\Omega \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{S}(p))}{\partial n}(t, x)=(I / 2+K) p(t, x) \\
& \lim _{\Omega^{\prime}}(t, x)=(-I / 2+K) p(t, x) \\
& \lim _{\Omega \rightarrow x \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(I / 2+K^{\prime}\right) \varphi(t, x) \\
& \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=\left(-I / 2+K^{\prime}\right) \varphi(t, x)
\end{aligned}
$$

Retarded potential operators

For $x \in \Omega^{-}$, resp. $x \in \Omega$ going to Γ :

Traces of the potential operators

$$
\begin{aligned}
& \lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)= \\
& \lim _{\Omega \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)=V p(t, x) \\
& \lim ^{-} \ni x \rightarrow \Gamma \\
& \frac{\partial(\mathcal{S}(p))}{\partial n}(t, x)=(I / 2+K) p(t, x) \\
& \lim _{\Omega \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{S}(p))}{\partial n}(t, x)=(-I / 2+K) p(t, x) \\
& \lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(-I / 2+K^{\prime}\right) \varphi(t, x) \\
& \lim _{\Omega \ni \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(I / 2+K^{\prime}\right) \varphi(t, x) \\
&\left.\lim ^{\prime}\right) \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=\lim \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=W \varphi(t, x)
\end{aligned}
$$

Retarded potential operators

For $x \in \Omega^{-}$, resp. $x \in \Omega$ going to Γ :

Traces of the potential operators

$$
\begin{aligned}
& \lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)= \\
& \lim _{\Omega \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)=V p(t, x) \\
& \lim _{\Omega^{-} \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{S}(p))}{\partial n}(t, x)=(I / 2+K) p(t, x) \\
& \lim _{\Omega \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{S}(p))}{\partial n}(t, x)=(-I / 2+K) p(t, x) \\
& \lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(-I / 2+K^{\prime}\right) \varphi(t, x) \\
& \lim _{\Omega \ni x \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(I / 2+K^{\prime}\right) \varphi(t, x) \\
& \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=\lim _{\Omega \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=W \varphi(t, x)
\end{aligned}
$$

Retarded potential operators

For $x \in \Omega^{-}$, resp. $x \in \Omega$ going to Γ :

Traces of the potential operators

$$
\begin{gathered}
\lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)=\lim _{\Omega \ni x \rightarrow \Gamma}(\mathcal{S}(p))(t, x)=V p(t, x) \\
\lim _{\Omega^{-} \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{S}(p))}{\partial n}(t, x)=(I / 2+K) p(t, x) \\
\lim _{\Omega \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{S}(p))}{\partial n}(t, x)=(-I / 2+K) p(t, x) \\
\lim _{\Omega^{-} \ni x \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(-I / 2+K^{\prime}\right) \varphi(t, x) \\
\lim _{\Omega \ni x \rightarrow \Gamma}(\mathcal{D}(\varphi))(t, x)=\left(I / 2+K^{\prime}\right) \varphi(t, x) \\
\lim _{\left.\Omega^{-}\right)} \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=\lim _{\Omega \ni x \rightarrow \Gamma} \frac{\partial(\mathcal{D}(\varphi))}{\partial n}(t, x)=W \varphi(t, x)
\end{gathered}
$$

Retarded potential operators

Retarded potential operators

$$
\begin{gathered}
V p(t, x):=\frac{1}{4 \pi} \int_{\Gamma} \frac{p(\tau, y)}{|x-y|} \mathrm{d} \Gamma_{y} \\
K p(t, x):=\frac{1}{4 \pi} \int_{\Gamma} \frac{n(x)(x-y)}{|x-y|}\left(\frac{p(\tau, y)}{|x-y|^{2}}+\frac{\dot{p}(\tau, y)}{|x-y|}\right) \mathrm{d} \Gamma_{y} \\
K^{\prime} \varphi(t, x):=\frac{1}{4 \pi} \int_{\Gamma} \frac{n(y)(x-y)}{|x-y|}\left(\frac{\varphi(\tau, y)}{|x-y|^{2}}+\frac{\dot{\varphi}(\tau, y)}{|x-y|}\right) \mathrm{d} \Gamma_{y} \\
W \varphi(t, x):=\lim _{\Omega \ni x^{\prime} \rightarrow x} n(x) \nabla_{x^{\prime}}\left(-\frac{1}{4 \pi} \int_{\Gamma} n(y) \nabla_{x^{\prime}} \frac{\varphi\left(t-\left|x^{\prime}-y\right|, y\right)}{\left|x^{\prime}-y\right|}\right) \mathrm{d} \Gamma_{y}
\end{gathered}
$$

$$
\tau:=t-|x-y|
$$

- time domain single layer operator
- time domain double layer operator
- time domain adjoint double layer operator
- time domain hypersingular boundary integral operator

Retarded potential boundary integral equations

Direct formulation

Let $u(t, x)=0$ in Ω^{-}. Then

$$
u(t, x)=\mathcal{D}\left(\left.u\right|_{\Gamma}\right)-\mathcal{S}\left(\left.\partial_{n} u\right|_{\Gamma}\right) \quad \text { in } \mathbb{R}_{+} \times \Omega
$$

$\gamma_{0}^{e x}$

$$
\begin{gathered}
\gamma_{0}^{e x} u(t, x)=\gamma_{0}^{e x}\left(\mathcal{D}\left(\left.u\right|_{\Gamma}\right)-\mathcal{S}\left(\left.\partial_{n} u\right|_{\Gamma}\right)\right) \\
\left.u\right|_{\Gamma}=\left(I / 2+K^{\prime}\right)\left(\left.u\right|_{\Gamma}\right)-V\left(\partial_{n} u_{\Gamma}\right) \\
\left(K^{\prime}-I / 2\right)\left(\left.u\right|_{\Gamma}\right)=V\left(\partial_{n} u_{\Gamma}\right)
\end{gathered}
$$

$\gamma_{1}^{e x}$

$$
\begin{gathered}
\gamma_{1}^{e x} u(t, x)=\gamma_{1}^{e x}\left(\mathcal{D}\left(\left.u\right|_{\Gamma}\right)-\mathcal{S}\left(\left.\partial_{n} u\right|_{\Gamma}\right)\right) \\
\left.\partial_{n} u\right|_{\Gamma}=W\left(\left.u\right|_{\Gamma}\right)-(-I / 2+K)\left(\left.\partial_{n} u\right|_{\Gamma}\right) \\
(K+I / 2)\left(\left.\partial_{n} u\right|_{\Gamma}\right)=W\left(\left.u\right|_{\Gamma}\right)
\end{gathered}
$$

Retarded potential boundary integral equations

Indirect formulation

$$
u(t, x)=(\mathcal{S}(p))(t, x) \quad \text { in } \mathbb{R}_{+} \times \Omega
$$

$\gamma_{0}^{e x}$

$$
\begin{gathered}
\gamma_{0}^{e x} u(t, x)=\gamma_{0}^{e x}(\mathcal{S}(p))(t, x) \\
\left.u\right|_{\Gamma}=V(p)
\end{gathered}
$$

$\gamma_{1}^{e x}$

$$
\begin{gathered}
\gamma_{1}^{e x} u(t, x)=\gamma_{1}^{e x}(\mathcal{S}(p))(t, x) \\
\left.\partial_{n} u\right|_{\Gamma}=(-I / 2+K)(p)
\end{gathered}
$$

Retarded potential boundary integral equations

Indirect formulation

$$
u(t, x)=(\mathcal{D}(\varphi))(t, x) \quad \text { in } \mathbb{R}_{+} \times \Omega
$$

$\gamma_{0}^{e x}$

$$
\begin{gathered}
\gamma_{0}^{e x} u(t, x)=\gamma_{0}^{e x}(\mathcal{D}(\varphi))(t, x) \\
\left.u\right|_{\Gamma}=\left(I / 2+K^{\prime}\right)(\varphi)
\end{gathered}
$$

$\gamma_{1}^{e x}$

$$
\begin{gathered}
\gamma_{1}^{e x} u(t, x)=\gamma_{1}^{e x}(\mathcal{D}(\varphi))(t, x) \\
\left.\partial_{n} u\right|_{\Gamma}=W(\varphi)
\end{gathered}
$$

Mathematical analysis of RPBIE

■ usually done via Laplace transform to frequency domain

$$
(\mathcal{L} f)(\omega)=\hat{f}=\int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} \omega t} f(t) \mathrm{d} t
$$

■ e.g.

$$
(\mathcal{L}(V p))(\omega)=\frac{1}{4 \pi} \int_{\Gamma} \frac{\mathrm{e}^{\mathrm{i} \omega|x-y|}}{|x-y|} \hat{p}(y, \omega) \mathrm{d} \Gamma_{y}=\hat{V}_{\omega} \hat{p}(\omega, x)
$$

- RPBIE $\xrightarrow[\rightarrow]{\mathcal{L}}$ BIE (Helmholtz equation) $\xrightarrow{\mathcal{L}^{-1}}$ RPBIE

Variational formulation

Space-time variational formulation for soft scattering

- indirect formulation using single layer potential for Dirichlet problem

$$
\begin{gathered}
V(\phi)=\left.u\right|_{\Gamma} \\
\int_{\Gamma} \frac{\phi(t-|x-y|, y)}{4 \pi|x-y|} \mathrm{d} \Gamma_{y}=g(t, x)
\end{gathered}
$$

Weak formulation

Find $\phi \in H^{-1 / 2,-1 / 2}([0, T] \times \Gamma):=L^{2}\left(0, T, H^{-1 / 2}(\Gamma)\right)+H^{-1 / 2}\left(0, T, L^{2}(\Gamma)\right)$ such that

$$
\int_{0}^{T} \int_{\Gamma} \int_{\Gamma} \frac{\dot{\phi}(t-|x-y|, y) \xi(t, x)}{4 \pi|x-y|} \mathrm{d} \Gamma_{y} \mathrm{~d} \Gamma_{x} \mathrm{~d} t=\int_{0}^{T} \int_{\Gamma} \dot{g}(x, t) \xi(x, t) \mathrm{d} \Gamma_{x} \mathrm{~d} t
$$

holds for all ξ.

Space-time Galerkin discretization

Discretization

$$
\phi_{\text {Galerkin }}=\sum_{i=1}^{N} \sum_{i=1}^{M} \alpha_{i}^{j} \varphi_{j}(x) b_{i}(t), \quad(x, t) \in \Gamma
$$

- $\left\{b_{i}\right\}_{i=1}^{N} \ldots$ basis functions in time (with compact supports)
- $\left\{\varphi_{j}\right\}_{j=1}^{M} \ldots$ basis functions in space (with compact supports)
- $\alpha_{i}^{j} \ldots$ unknown coefficients

Space-time Galerkin discretization

Galerkin discretization

Find $\alpha_{i}^{j}, i=1, \ldots, N, j=1, \ldots, M$ such that

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Gamma} \int_{\Gamma} \sum_{i=1}^{N} \sum_{j=1}^{M} \frac{\alpha_{i}^{j} \varphi_{j}(y) \dot{b}_{i}(t-|x-y|) \varphi_{l}(x) b_{k}(t)}{4 \pi|x-y|} \mathrm{d} \Gamma_{y} \mathrm{~d} \Gamma_{x} \mathrm{~d} t \\
& =\int_{0}^{T} \int_{\Gamma} \dot{g}(x, t) \varphi_{l}(x) b_{k}(t) \mathrm{d} \Gamma_{x} \mathrm{~d} t
\end{aligned}
$$

for $k=1, \ldots, N, l=1, \ldots, M$.

$$
\begin{gathered}
\psi_{i, k}(r):=\int_{0}^{T} \frac{\dot{b}_{i}(t-r) b_{k}(t)}{4 \pi r} \mathrm{~d} t \\
A_{j, l}^{i, k}:=\int_{\Gamma} \int_{\Gamma} \varphi_{j}(y) \varphi_{l}(x) \psi_{i, k}(|x-y|) \mathrm{d} \Gamma_{y} \mathrm{~d} \Gamma_{x} \\
=\int_{\operatorname{supp}\left(\varphi_{l}\right)} \int_{\operatorname{supp}\left(\varphi_{j}\right)} \varphi_{j}(y) \varphi_{l}(x) \psi_{i, k}(|x-y|) \mathrm{d} \Gamma_{y} \mathrm{~d} \Gamma_{x}
\end{gathered}
$$

Space-time Galerkin discretization

Galerkin discretization

Find $\alpha_{i}^{j}, i=1, \ldots, N, j=1, \ldots, M$ such that

$$
\sum_{i=1}^{N} \sum_{j=1}^{M} A_{j, l}^{i, k} \alpha_{i}^{j}=\underbrace{\int_{0}^{T} \int_{\Gamma} \dot{g}(x, t) \varphi_{l}(x) b_{k}(t) \mathrm{d} \Gamma_{x} \mathrm{~d} t}_{=: g_{l}^{k}}
$$

for $k=1, \ldots, N, l=1, \ldots, M$.

Temporal basis functions

Integration problem

How to efficiently evaluate $A_{j, l}^{i, k}$?

- $\psi_{i, k}(r):=\int_{0}^{T} \frac{\dot{b}_{i}(t-r) b_{k}(t)}{4 \pi r} \mathrm{~d} t$ is non-zero only for $r=|x-y|$ such that $\operatorname{supp}\left(\dot{b}_{i}(t-r)\right) \cap \operatorname{supp}\left(b_{j}(t)\right) \neq \emptyset$

Temporal basis functions

- construction of infinitely smooth temporal basis functions using partition of unity method (PUM), [Sauter, Veit]

Let us start with the C^{∞} function

$$
f(t):=\left\{\begin{array}{l}
\operatorname{erf}(2 \operatorname{arctanh}(t)), \text { for }|t|<1 \\
-1, \text { for } t \leq-1 \\
1, \text { for } t \geq 1
\end{array}\right.
$$

Then

$$
h_{a, b}(t):=\frac{1}{2} f\left(2 \frac{t-a}{b-a}-1\right)+\frac{1}{2},
$$

and

$$
\rho_{a, b, c}(t):=\left\{\begin{array}{l}
h_{a, b}(t,), \text { for } t \leq b, \\
1-h_{b, c}(t), \text { for } t \geq b .
\end{array}\right.
$$

Temporal basis functions

Partition of unity functions

Let $\Theta=\langle 0, T\rangle$ and $0=t_{0}<t_{1}<t_{2}<\ldots<t_{N-2}<t_{N-1}=T, \tau_{i}:=\left\langle t_{i-1}, t_{i}\right\rangle$. Let $\Theta_{1}:=\tau_{1}, \Theta_{1}:=\tau_{1}, \Theta_{i}:=\tau_{i-1} \cup \tau_{i}, i=2, \ldots N-2, \Theta_{N}:=\tau_{N-1}$. Then a smooth partition of unity subordinate to the cover $\left\{\Theta_{i}\right\}$ is defined as

$$
\begin{aligned}
\varphi_{1}(t) & :=1-h_{t_{0}, t_{1}}(t) \\
\varphi_{i}(t) & :=\rho_{t_{i-2}, t_{i-1}, t_{i}}(t), \quad \text { for } i=2, \ldots, N-1, \\
\varphi_{N}(t) & :=h_{t_{N-2}, t_{N-1}}(t)
\end{aligned}
$$

Temporal basis functions

The temporal basis functions are defined as

$$
\begin{aligned}
b_{1}(t) & :=\varphi_{1}(t) t^{2}, \\
b_{i}(t) & :=\varphi_{i}(t), \quad \text { for } i=2, \ldots, N-1, \\
b_{N}(t) & :=\varphi_{N}(t) .
\end{aligned}
$$

Implementation remarks

Algorithm 1 System matrix assembly

Require: A triangulation $\left\{\tau_{i}: 1 \leq i \leq M\right\}$ of Γ, number of time-steps N, time derivative g of RHS

```
for \(k=1\) to \(N\) do
2: \(\quad g_{k} \leftarrow\left(\int_{0}^{T} \int_{\Gamma} \dot{g}(x, t) \varphi_{l}(x) b_{k}(t) \mathrm{d} \Gamma_{x} \mathrm{~d} t\right)_{l=1}^{M} \in \mathbb{R}^{M}\)
3: \(\quad\) for \(i=1\) to \(N\) do
4: \(\quad\) if \(\min \operatorname{supp} b_{i} \geq \max \operatorname{supp} b_{k}\) then
\(A^{k, i} \leftarrow 0 \in \mathbb{R}^{M \times M}\)
    else
                for \(j, l=1\) to \(M\) do
                    \(A_{j, l}^{k, i} \leftarrow \int_{0}^{T} \int_{\Gamma} \int_{\Gamma} \varphi_{j}(y) \varphi_{l}(x) \psi(r) \mathrm{d} \Gamma_{y} \mathrm{~d} \Gamma_{x}\)
                end for
10: end if
11: end for
12: end for
```


Matrix structure

Matrix structure

Solving the system

What kind of solver should we use?

- iterative (GMRES, BiCGStab)
- would be ideal because of low memory requirements
- missing suitable preconditioners
- direct (PARDISO, SuperLU, MUMPS)
- high memory requirements

Current work

- optimizing and parallelizing system matrix assembly
- tests of direct solvers
- MUMPS - 5120 elements, 25 time steps - approx. 15 min . on ANSELM
- MPI parallelization necessary
- matrix approximation?
- preconditioners?

目 Bamberger，A．，Ha Duong，T．Formulation varationnelle espace－temps pour le calcul par potentiel retardé d＇une onde acoustique．Math． Meth．Apl．Sci．，8， 1986.

國 Ha Duong，T．On Retarded Potential Boundary Integral Equations and their Discretisations．LNCSE，31， 2003.

圊 Costabel，M．Time－Dependent Problems with the Boundary Integral Equation Method．Encyclopedia of Computational Mechanics， 2004.

囯 Sauter，S．，Veit，A．A Galerkin Method for Retarded Boundary Integral Equations with Smooth and Compactly Supported Temporal Basis Functions．Numer．Math．， 2012.

Thank you for your attention！

